Presentation Topics 1

- 1. Let A, B, C be sentences. Show that $(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \land \neg B) \Rightarrow C)$ is a tautology. Find another expression that is also equivalent to these.
- 2. Let A be a set. Show that $\emptyset \subseteq A$ and that $A \subseteq A$. If B is another set, show or disprove that $A \subseteq B$ or $B \subseteq A$.
- 3. Let A, B, C be sets. Show that if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. What is the analogous statement for four sets? What about N sets?
- 4. Let A, B, C be sets. Show that $C \subseteq A \cap B \iff C \subseteq A \land C \subseteq B$. Is there an analogous statement for $C \subseteq A \cup B$?
- 5. Let A be a set and let $\{B_{\lambda}\}_{{\lambda}\in\Lambda}$ be a collection of sets indexed by a set Λ . Show that $A\cap \left(\bigcup_{{\lambda}\in\Lambda}B_{\lambda}\right)=\bigcup_{{\lambda}\in\Lambda}\left(A\cap B_{\lambda}\right)$. Find and prove the analogous statement for $A\cap \left(\bigcap_{{\lambda}\in\Lambda}B_{\lambda}\right)$.
- 6. Let A, B be sets. Show that the following three conditions are equivalent:
 - (a) $A \subseteq B$.
 - (b) $A \cap B = A$.
 - (c) $A \cup B = B$.

Does the same hold if you reverse the roles of A and B?

- 7. Let A, B be subsets of a set U. Show that $(A \cap B)^c = A^c \cup B^c$. Does the same hold if you reverse the roles of the intersection and the union?
- 8. Let $\{A_{\lambda}\}_{{\lambda} \in \Lambda}$ be a collection of subsets of a set U indexed by a set Λ . Show that $\left(\bigcup_{{\lambda} \in \Lambda} A_{\lambda}\right)^c = \bigcap_{{\lambda} \in \Lambda} A_{\lambda}^c$. Does the same hold if you reverse the roles of the intersection and the union?

- 9. Let A, B, C be sets. Show that $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$. What is the analogous statement for $C \setminus (A \cap B)$?
- 10. Let A, B, C be sets. Show that $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$. What is the analogous statement for three sets?
- 11. Let A, B be sets. Show that $A \subseteq B \iff P(A) \subseteq P(B)$. Does the same hold if the containments are strict?
- 12. Let A, B be sets. Show that $P(A \cap B) = P(A) \cap P(B)$. Does the same hold if we take unions instead of intersections?
- 13. Let A, B be sets. Show that $P(A) \cup P(B) \subseteq P(A \cup B)$. Find an example to show that the containment can be strict.
- 14. Let A, B be sets and let $f: A \to B$ be a function. Assume that $X, Y \subseteq A$. Show that $f(X \cap Y) \subseteq f(X) \cap f(Y)$. Does the same hold if we take unions instead of intersections?
- 15. Let A, B be sets and let $f: A \to B$ be a function. Let Λ be an indexing set for a collection $\{T_{\lambda}\}_{{\lambda} \in \Lambda}$ of subsets of A. Show that $f(\bigcup_{{\lambda} \in \Lambda} T_{\lambda}) = \bigcup_{{\lambda} \in \Lambda} f(T_{\lambda})$. Does the same hold if we take intersections instead of unions?
- 16. Let A, B be sets and let $f: A \to B$ be an invertible function. If $W, Z \subseteq B$, show that $f^{-1}(W \cap Z) = f^{-1}(W) \cap f^{-1}(Z)$. Does the same hold if we take unions instead of intersections?
- 17. Let A, B be sets and let $f: A \to B$ be a function. Let Λ be an indexing set for a collection $\{T_{\lambda}\}_{{\lambda} \in \Lambda}$ of subsets of B. Show that $f^{-1}(\bigcup_{{\lambda} \in \Lambda} T_{\lambda}) = \bigcup_{{\lambda} \in \Lambda} f^{-1}(T_{\lambda})$. Does the same hold if we take intersections instead of unions?